

Part of Energy Queensland

Substation Standard Insulation for Co-ordination

These standards created and made available are for the construction of Energy Queensland infrastructure. These standards ensure meeting of Energy Queensland's requirements. External companies should not use these standards to construct non-Energy Queensland assets.

If this standard is a printed version, to ensure compliance, reference must be made to the Energy Queensland internet site to obtain the latest version.

Approver	Carmelo Noel	
	General Manager Asset Standards	
If RPEQ sign off required insert details below.		
Energy Queensland		
Certified Person name and Position	Registration Number	
John Lansley	RPEQ 6371	
Manager Substation Standards		

Abstract: The aim of this document is to establish guidelines for insulation co-ordination within Energy Queensland. This document describes the functional requirements for substation insulation co-ordination and the integration of insulation co-ordination systems into a substation. This is to ensure the safety of personnel, the general public and network assets.

Keywords: Insulation, co-ordination, overvoltage, low frequency, transient, lightning, switching surge, surge arrester, protection, standard

Owner: EGM Engineering SME: Senior Engineer Substation Standards

Release: 3, 15 Jun 2023 | Doc ID: 3058912 Uncontrolled When Printed 1 of 26

Part of Energy Queensland

Ta 1	ble of Co	ontents	1
2		S	
3		and abbreviations	
4		ce and Ratings	
	4.3.1	General	
	4.3.2	Self-restoring insulation	9
	4.3.3	Non-self-restoring insulation	
	4.3.4	Insulation behaviour at power frequency voltage and temporary overvoltages	
	4.3.5	Probability of disruptive discharge under impulse voltage	
5	Overvoltag	e protective devices and their characteristics	11
	5.1.1	Surge arresters	11
	5.1.2	Application of surge arresters	11
	5.1.3	Surge arrester earthing	12
	5.1.4	Surge arrester separation distance	12
	5.1.5	Safety factor	12
	5.1.6	Additional considerations	12
	5.1.7	Pole footing impedance	12
	5.1.8	Reducing lightning surges	12
	5.1.9	Insulator design for overhead lines	12
6	Insulation	co-ordination	13
	6.3.1	Design data and parameters	16
	6.3.2	Design considerations	16
	6.3.3	Design outputs	16
An	nex A 17		
	ormative 17		
		oltages	17
	nex B 21		
	ormative 21	rdination checklist – example	21
	nex C 22		∠ 1
	ormative 22		
His	storical over	view of standards	22
An	nex D 23		
Re	vision histor	у	23

List of Tables

Fable 4-1 - Substation equipment insulation ratings as outlined in the Substation Standard for Substation Primary Plant Rating (STNW3015)	6
Fable 4-2 - System temporary overvoltage characteristics	8
Fable 5-1 - Surge arrester locations	11
Γable of Figures	
Figure 4-1 - Classes and shapes of overvoltages, standard voltage shapes and standard withsta voltages tests (IEC 60071.1, 2019)	
Figure 4-2 - Overvoltage representation of magnitudes and durations. (Volker Hinrichsen, 2020)	8
Figure 6-1 Insulation Co-ordination Procedure (IEC 60071.1. 2019)	15

Owner: EGM Engineering SME: Senior Engineer Substation Standards

Release: 3, 15 Jun 2023 Proof Printed 3 of 26

1 Overview

Insulation co-ordination is the arrangement of insulation levels of different components in the substation. This is required so that if an insulation failure occurs, it would be confined to the place on the system where it would result in the least damage, be the least expensive to repair and cause the least disturbance to the continuity of supply. In addition to the substation equipment normal operating voltage, it will be subjected to different types of overvoltages. It is required to select dielectric strength of equipment in relation to the voltages which can appear on the system for which the equipment is intended and taking into account the service environment and the characteristics of the available protective devices.

Ergon Energy and Energex have adopted a set of standard rated withstand voltages, minimum clearances, and a specified outage rate for direct lighting strike shielding. Therefore, insulation coordination studies are shortened to the task of reducing overvoltage stresses on equipment by providing adequate surge protection by selection and positioning of surge arresters.

1.1 Purpose and scope

This document provides an overview of insulation levels, voltage stresses and procedures for insulation co-ordination studies.

The aim is to minimise equipment damage and network outages due to overvoltages so far as reasonably practicable.

This document does not cover specific aspects of insulation co-ordination such as lightning strike shielding and selection of surge arresters. They are covered in other documents and application guides.

2 References

The following documents and standards were used in the development of this joint EQL standard.

2.1 Legislation, regulations, rules and codes

(Queensland Electrical Safety Act, 2002) (Queensland Government)

(Queensland Electrical Safety Regulation, 2013) (Queensland Government)

(Queensland Electricity Act, 1994) (Queensland Government)

(Queensland Electricity Regulation, 2006) (Queensland Government)

(Queensland Work Health and Safety Act, 2011) (Queensland Government)

(Queensland Work Health and Safety Regulation, 2011) (Queensland Government)

(National Electricity Rules, 2023) (AEMC)

2.2 Energy Queensland controlled documents

Energex | Ergon Energy- (RED 1909 STNW3013)-Clearances in air (Substation standard)

Ergon Energy-(STNW3033)-Selection of Surge Arresters (Substation standard)

<u>Ergon Energy-(STNW3355)-Standard for Sub-transmission Overhead Line Design (Line design</u> standard)

2.3 Energy Queensland other documents

Ergon Energy-(STNW3015)-Primary Plant Ratings (Substation standard)

Ergon Energy-(STNW3028)-Substation Earthing (Substation standard)

Ergon Energy-(STNW3032)-Substation Direct Lightning Strike Shielding (Substation standard)

2.4 Other sources

(AS 60099.4:2022) (Standards Australia)

Surge arresters. Part 4: Metal-oxide surge arresters without gaps for a.c. systems (Australian Standard)

(AS 2067, 2016) (Standards Australia)

Substations and high voltage installations exceeding 1 kV a.c. (Australian Standard)

(IEC 60071.1, 2019) (IEC)

Insulation co-ordination – Part 1: Definitions, principles and rules. (IEC Standard)

(IEC 60071.2, 2023) (IEC)

Insulation co-ordination - Part 2: Application guidelines (IEC Standard)

(IEC 60071-4, 2004) (IEC)

Insulation co-ordination - Part 4: Computational guide to insulation co-ordination and modelling of electrical networks (IEC Standard)

(IEEE 1313.2) (IEEE)

IEEE Guide for the Application of Insulation Coordination. (IEEE Standard)

2.5 Other documents

Juan A. Martinez-Velasco, Francisco González Molina, 2015, POWER SYSTEM TRANSIENTS – Temporary Overvoltages in Power Systems viewed August 2020 http://www.eolss.net/Sample-Chapters/C05/E6-39-59-05.pdf

Volker Hinrichsen, Metal-Oxide Surge Arresters in High-Voltage Power Systems Fundamentals Ed. 3.0 Siemens viewed August 2020, https://assets.siemens-energy.com/siemens/assets/api/uuid:2ded5619-b9b1-4a28-ae11-d0742992f5da/e50001-g630-h197-x-4a00-ableiterhandbuch-teil-1-a4.pdf

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this standard, the following definitions apply.

Continuous voltage Considered having constant r.m.s value, continuously applied to any pair of terminals of an insulation [(IEC 60071.1, 2019), modified].

Earth fault factor (k) At a given location of a three-phase system, and for a given system configuration, the ratio of the highest RMS phase-to-earth power-frequency voltage on a healthy phase during a fault to earth affecting one or more phases at any point on the system to the RMS phase-to-earth power-

Owner: EGM Engineering Release: 3, 15 Jun 2023 | Release: 3, 15 Jun 20

frequency voltage which would be obtained at the given location in the absence of any such fault (IEC 60071.1, 2019).

External insulation The distances in atmospheric air, and the surfaces in contact with atmospheric air of solid insulation of the equipment which are subject to dielectric stresses and to the effects of atmospheric and other external conditions, such as pollution, humidity, vermin, etc. (IEC 60071.1, 2019).

- Highest voltage for equipment (Um) The highest r.m.s. value of phase-to-phase voltage for which the equipment is designed in respect of its insulation as well as other characteristics which relate to this voltage [(IEC 60071.1, 2019), modified].
- Highest voltage of a system (Us) The highest value of operating voltage which occurs under normal operating conditions at any time and at any point in the system [(IEC 60071.1, 2019), modified].
- Impedance earthed (neutral) system A system where the neutral point is connected through an impedance (resistor/reactor) to reduce the prospective earth fault current. For a line-ground fault, the unfaulted phases may rise above normal operating voltages. The ratio between the upstream positive and zero sequence impedance and the neutral impedance will affect the earth fault factor.
- Insulation co-ordination Selection of the dielectric strength of equipment in relation to the operating voltages and overvoltages which can appear on the system for which the equipment is intended, and taking into account the service environment and the characteristics of the available preventing and protective devices.

The "dielectric strength" of the equipment is meant here as its rated insulation level or its standard insulation level (IEC 60071.1, 2019).

Insulation failure

Failure of insulation is the most common cause of problems in electrical equipment. The purpose of insulation is to prevent the flow of electric current between points of different potential in an electrical system.

Internal insulation

The internal solid, liquid, or gaseous parts of the insulation of equipment which are protected from the effects of atmospheric and other external conditions (IEC 60071.1, 2019).

- Lightning impulse protection level (UpI) Maximum permissible peak voltage value on the terminals of a protective device subjected to lightning impulses under specific conditions (IEC 60071.1, 2019).
- Lightning impulse withstand voltage (LIWV) or basic insulation level (BIL): The electrical strength of insulation expressed in crest value of a standard lightning impulse under standard atmospheric conditions. The standard lightning impulse is an impulse voltage having the front time 1.2 µs and a time to half value of 50 µs $(1.2x50 \mu s)$.
- Nominal Voltage of a System (Un): A suitable approximate value of voltage used to designate the identity of a system (IEC 60071.1, 2019).

Non self-restoring insulation Insulation which loses its insulating properties, or does not recover them completely, after a disruptive discharge (IEC 60071.1, 2019).

Owner: EGM Engineering Release: 3, 15 Jun 2023 (2013) 20: 3058912 SME: Senior Engineer Substation Standards Uncontrolled When Printed 6 of 26

Overvoltages (OV) Between one phase conductor and earth or across a longitudinal insulation having a peak value exceeding the peak of the highest voltage of the system divided by $\sqrt{3}$ or between phase conductors having a peak value exceeding the amplitude of the highest voltage of the system (IEC 60071.1, 2019).

Performance criterion The basis on which the insulation is selected so as to reduce to an economically and operationally acceptable level the probability that the resulting voltage stresses imposed on the equipment will cause damage to equipment insulation or affect continuity of service.

This criterion is usually expressed in terms of an acceptable failure rate (number of failures per year, years between failures, risk of failure, etc.) of the insulation configuration. See Substation Direct Lightning Strike Shielding SS-1-8-2 for more information [(IEC 60071.1, 2019), modified].

Rated insulation level: A set of standard withstand voltages which characterise the dielectric strength of the insulation.

Rated withstand voltage The value of the test voltage, applied in a standard withstand voltage test that proves that the insulation complies with one or more required withstand voltages.

Note 1 to entry: It is a rated value of the insulation of the equipment.

- Representative overvoltages (Urp) Overvoltage assumed to produce the same dielectric effect on the insulation as the overvoltage of a given class occurring in service due to various origins (IEC 60071.1, 2019).
- Required withstand voltage (Urw) The test voltage that the insulation must withstand in a standard withstand test to ensure that the insulation will meet the performance criterion when subjected to a given class of overvoltages in actual service conditions and for the whole service duration. The required withstand voltage has the shape of the co-ordination withstand voltage, and is specified with reference to all the conditions of the standard withstand test selected to verify it (IEC 60071.1, 2019).
- Self-restoring insulation Insulation which completely recovers its insulating properties within a short time interval after a disruptive discharge (IEC 60071.1, 2019).
- Service reliability The ability of a power system to meet its supply function under stated conditions for a specified period of time.
- Short-duration power frequency withstand voltage (PFWV) also referred to as ACWV The electrical strength of insulation expressed in r.m.s value of a standard short-duration power frequency voltage under standard atmospheric conditions. The standard short-duration power frequency voltage is a sinusoidal voltage with frequency between 48 Hz and 62 Hz, and duration of 60 s.
- Standard rated withstand voltage (Uw) Standard value of the rated withstand voltage as specified in this document (IEC 60071.1, 2019).
- Statistical LIWV/BIL (or SIWV/BSL) The crest value of a standard lightning (or switching) impulse for which the insulation exhibits a 90% probability of withstand (or a 10% probability of failure) under specified conditions applicable to self-restoring insulation.

Surge arrester (SA) A protective device for limiting surge voltages on equipment by diverting surge current and returning the device to its original status. It is capable of repeating these functions as specified.

Switching impulse protective level (Ups) Maximum permissible peak voltage value on the terminals of a protective device subjected to switching impulses under specific conditions (IEC 60071.1, 2019).

Switching impulse withstand voltage (SIWV) or basic switching impulse insulation level (BSL): The electrical strength of insulation expressed in crest value of a standard switching impulse.

Switching overvoltage A transient OV in which a slow front, short duration, unidirectional or oscillatory, highly damped voltage is generated (usually by switching or faults). $T1 = 20-5000 \mu s$, $T2 < 20000 \mu s$.

The standard lightning impulse An impulse voltage having a front time of 1.2 µs and a time to half value of 50 µs.

The standard short duration power frequency voltageA sinusoidal voltage having a frequency between 48 Hz and 62 Hz, and duration of 60 s.

The standard switching impulse An impulse voltage having a time to peak of 250 µs and a time to half value of 2500 µs.

Short duration overvoltage of few milliseconds or less, oscillatory or non-Transient overvoltage oscillatory, usually highly damped (IEC 60071.1, 2019).

Withstand voltage Value of the test voltage to be applied under specified conditions in a withstand voltage test, during which a specified number of disruptive discharges is tolerated [(IEC 60071.1, 2019), modified].

3.2 **Abbreviations**

The following acronyms appear in this standard.

AS	Australian Standard		
BIL	Basic Insulation Level		
CFO	Critical Flashover		
EQL	Energy Queensland Limited		
FFO	Fast-front overvoltages		
IEC	International Electrotechnical Commission		
k	Earth fault factor		
kc	Co-ordination factor		
ks	Safety factor		
Kt	Atmospheric correction factor		
LIWV	Lightning Impulse Withstand Voltage also referred to as Basic Insulation		
	Level (BIL)		
OV	Overvoltage		
p.u.	Per unit		
PSCAD/EMTP	Power System Computer Aided Design / Electromagnetic Transients		
	Program		
SIWV	Switching impulse withstand voltage		
SFO	Slow-front overvoltages		

Owner: EGM Engineering Release: 3, 15 Jun 2023 (2013) 20: 3058912 Uncontrolled When Printed 8 of 26 SME: Senior Engineer Substation Standards

SM	Station class arrester – Medium duty type		
TOV	Temporary power-frequency overvoltage		
Um	Highest equipment voltage		
Un	Nominal voltage		
Ur	Surge diverter rated voltage level		
Urw	Required withstand voltage		
Us	Highest voltage of a system		
Uw	Standard rated withstand voltage		
VFFO	Very-fast-front overvoltages		

Performance and Ratings

4.1 Ranges for highest voltage for equipment

Two standard rated withstand voltages are sufficient to define the rated insulation levels of the equipment (IEC 60071.1, 2019):

- For equipment in range I: Above 1 kV to 245 kV:
 - o the standard rated lightning impulse withstand voltage and,
 - the standard rated short-duration power-frequency withstand voltage.
- For equipment in range II: Above 245 kV:
 - the standard rated switching impulse withstand voltage, and
 - the standard rated lightning impulse withstand voltage.

Within substations, equipment insulation shall meet the required withstand voltages outlined in Table 4-1. These insulation levels have been predetermined and are discussed in the Substation Primary Plant Rating Standard (STNW3015).

Table 4-1 - Substation equipment insulation ratings as outlined in the Substation Standard for **Substation Primary Plant Rating (STNW3015)**

Nominal Voltage	Highest Voltage	Rated Short duration power frequency withstand voltage (PFWV)	Rated lightning impulse withstand voltage (LIWV)
		kV	kVp
11	12	28	95 (75)
22	24	50	150 (125)
33	36	70	200 (170)
66	72.5	140	325
110	123	230	550
132	145	275	650
102) TO	(230)	(550)
220	245	460	1050
220	2.10	(395)	(950)

Owner: EGM Engineering SME: Senior Engineer Substation Standards

Release: 3, 15 Jun 2023 (2015) 3058912 Uncontrolled When Printed 9 of 26

NOTE: 1. Values in brackets specify lower acceptable LIWV and PFWV ratings for cable connected equipment.

4.2 Origin and classification of voltage stresses

The voltage stresses on insulation (IEC 60071.1, 2019) have been classified with reference to the shape of the voltage wave, which determines their effect on insulation and protective devices, without reference to the cause of overvoltages, as shown in Figure 4-1 below.

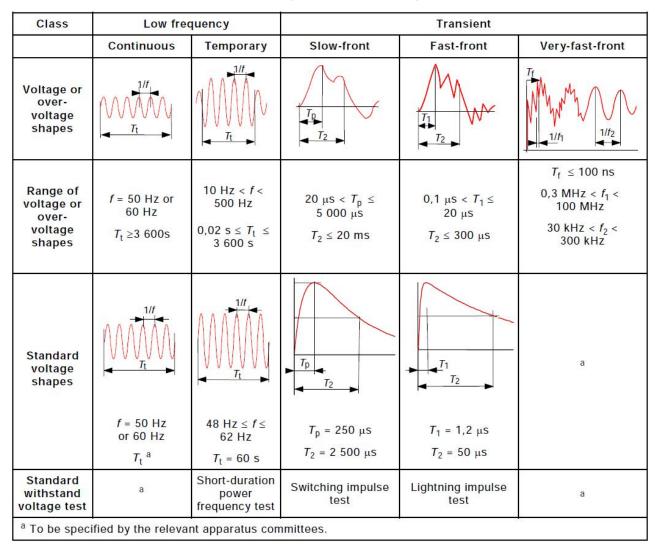


Figure 4-1 - Classes and shapes of overvoltages, standard voltage shapes and standard withstand voltages tests (IEC 60071.1, 2019)

It is conventional to express overvoltages as a ratio in terms of per unit (p.u.) of the peak value of overvoltages to the peak value of phase-to-earth of the highest voltage for system and or equipment.

The p.u. reference value =
$$\sqrt{2} \times \frac{Um}{\sqrt{3}}$$
.

The relative magnitude and duration of overvoltages are illustrated in Figure 4-2

Owner: EGM Engineering Release: 3, 15 Jun 2023 (1976) Release:

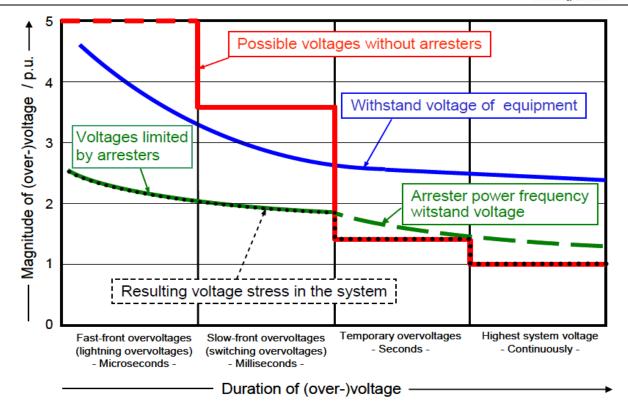


Figure 4-2 - Overvoltage representation of magnitudes and durations. (Volker Hinrichsen, 2020)

Table 4-2 - System temporary overvoltage characteristics below outlines the typical magnitudes of temporary overvoltages in p.u. and typical fault times. Further information is provided in 0.

Table 4-2 - System temporary overvoltage characteristics

	Magnitude of Overvoltage	
Temporary Overvoltage Cause	(p.u.)	Fault time
Fault Overvoltage (Effectively earthed)	1.3	Less than 1 second
Fault Overvoltage (Impedance earthed)	1.3 - 1.73	Less than 3 seconds
Load Rejection (Moderately extended)	< 1.2	Up to 7 minutes
Load Rejection (Extended system)	1.5	A few seconds
Load Rejection (Resonance &	3	Until cleared
Ferroresonance)	3	Offili cleared
Transformer Energisation	1.5 to 2.0	May last for seconds
Longitudinal Overvoltage	2.0	A few seconds to several
(synchronisation)	2.0	minutes
Slow Front Overvoltage (Line	2.8 to 3.0	
Energisation Ph-E)	2.0 to 3.0	-
Slow Front Overvoltage (Line	1.55 x Line Energisation Ph-E	
Energisation Ph-Ph)	Fault level	-
Slow Front Overvoltage (Fault initiation	2(k-1)	
max.)	k = earth fault factor	-
Slow Front Overvoltage (Fault clearing	2.0	
max.)	2.0	-
Slow Front Overvoltage (Switching of	< 2.0 (Ph-Ph)	
capacitive or inductive current)	< 3.0 (Ph-E)	-
Switching (Lightning Type)	2.0 (Without restrike)	
Switching (Lightning Type)	3.0 (With restrike)	-

Owner: EGM Engineering SME: Senior Engineer Substation Standards

Release: 3, 15 Jun 2023 P. 3058912 Uncontrolled When Printed 11 of 26

4.3 Insulation characteristics

4.3.1 General

Several factors which influence the dielectric strength of insulation include:

- The magnitude, shape and polarity of the applied voltage
- The type of insulation (gaseous, liquid, impurity and local inhomogeneities)
- The physical state of the insulation medium (temperature, pressure and other ambient conditions, mechanical stresses)
- Prior duty on the insulation
- Chemical effects
- Conductor surface effects

Insulation may be classified as either self-restoring or non-self-restoring.

4.3.2 Self-restoring insulation

The breakdown of air is strongly dependent on the gap configuration, wave shape and polarity of the surge and on ambient conditions. For outdoor insulators, the effects of humidity, rain and pollution

on the surface of the insulation also become important. For metal enclosed gas-insulated systems, the effect of the internal pressure, temperature, local inhomogeneities and impurity play an important role.

4.3.3 Non-self-restoring insulation

In liquid insulation, particle impurities, bubbles caused by chemical and physical effects or local discharges can drastically reduce the insulation strength. The amount of chemical degradation of the insulation may tend to increase with time. The same is valid for solid insulation. In this case, the mechanical stress may also affect the insulation strength.

4.3.4 Insulation behaviour at power frequency voltage and temporary overvoltages

Generally, discharge under power frequency voltage in normal operating conditions and under TOV will be caused by progressive deterioration of the insulating properties of the equipment or by exceptional reductions in insulation withstand due to severe ambient conditions.

Rain, fog, dew formation together with pollution can drastically reduce insulation strength.

4.3.5 Probability of disruptive discharge under impulse voltage

Non-self-restoring insulation

There are no methods presently available for determining the probability of a disruptive discharge of non-self-restoring insulation. Therefore, the probability of a withstand is assumed to be 100% at or below LIWV and SIWV. However, for stresses above the LIWV and SIWV level the probability of withstand is assumed to be zero.

Partial discharge in non-self-restoring insulation is not covered in this standard.

Self-restoring insulation

For self-restoring insulation, the probability of flashover may be described by an insulation strength characteristic curve. This curve has two basic parameters, the Critical Flashover (CFO), corresponding to the 50% probability of flashover for single impulse application, and a normalised

standard deviation σ_t . σ_t may be taken as 0.03 p.u. for lightning impulse voltages and 0.06 p.u. for switching impulse voltages.

4.4 Acceptable failure rates

The performance of an insulation system is determined by the number of insulation failures while in service. This is based on the voltage stresses imposed on equipment which cause damage to equipment insulation or affect continuity of service. The Insulation Co-ordination Application Guidelines (IEC 60071.2, 2014) provides the following general guidance on acceptable failure rates:

- Substation equipment: 0.001/year to 0.004/year depending on repair times or (250 to 1000 years mean time between failure (MTBF)).
- Overhead lines 0.1 to 20 failures / 100km /year (depending on design of line, lightning protection on line, tower footing resistance among other factors).
- Switching overvoltages: 0.01 to 0.001 per operation.

Minimum MTBF design targets to be used for the Ergon and Energex network are specified in Substation Direct Lightning Strike Shielding Standard (STNW3032).

5 Overvoltage protective devices and their characteristics

5.1.1 Surge arresters

Surge arresters are designed to limit the magnitude of overvoltage across their terminals to an acceptable voltage. Spark gaps shall not be used in EQL.

The main type of surge arrester currently employed within the EQL networks is the metal-oxide surge arresters without gaps, type SM or higher (IEC 60099-4, 2014), although gapped siliconcarbide arresters may still exist in older installations.

5.1.2 Application of surge arresters

Table 5-1 provides a guide to locations of where surge arresters are to be installed within a substation to ensure insulation co-ordination.

Table 5-1 - Surge arrester locations

Case / Equipment	Surge Arrester Requirement	
Equipment connected to an	Location at feeder bay entrance/exit.	
overhead line		
Overhead line to cable transition	For distribution, sub-transmission and transmission high voltages.	
point		
Power transformer	On all HV open bushings, located on separate structure no more than 5m from the bushings or located on bracket attached to the transformer. Arresters are not required:	
	On transformer cable boxes	
	On plug-in connected bushings	
	 Where the LIWV of the winding exceeds both the inductive transferred voltage and initial spike voltage Connected directly to cables and completely shielded by an earthed enclosure, and the next transitions to overhead conductors are protected by surge arresters. The neutral is directly earthed Impedance-earthed neutral bushings on uniformly-insulated windings 	
Gas insulated switchgear (GIS) and	ů .	
MV switchboards	overhead/underground feeder, 2 x surge arresters to be installed at overhead transition pole and next pole back.	
Capacitor bank and shunt reactor	At the line terminals, no more than 5m from terminals	
Reclosers	Arresters at HV bushings to take account of lower LIWV (where applicable)	
Underground cable sheaths (33kV cables and above)	In addition to the primary insulation, protection of the outer cable jacket or oversheath may also be required. Sheath voltage limiters (SVL's) may be required to reduce transient and steady state voltages to acceptable levels on the cable screen/sheath to prevent puncture of the cable jacket/oversheath. In the absence of an insulation coordination study specific to the cable, the following SVLs shall be used: • 33kV – 3kV • 66kV – 4.5kV • 110/132kV – 6.0kV	

Owner: EGM Engineering Release: 3, 15 Jun 2023 (1996) Release:

There are no surge arrester requirements for the following equipment;

- Outdoor equipment such as instrument transformers, disconnectors and circuit breakers should be adequately protected by the surge arresters installed on feeder line entry.
- Wave Traps. Phase-to-earth protection is not provided for this equipment since flashover would occur at the support insulators. Furthermore, manufacturers provide a protective device for low voltage components of the tuning pack.

5.1.3 Surge arrester earthing

To adequately protect substation equipment through the use of surge arresters, both the equipment being protected and surge arresters shall be connected to the substation earth grid. Arrester footing resistance also has an impact on travelling waves from surges.

See (RED 364) Sect 3.3-3.6 and (STNW3028) for more information.

5.1.4 Surge arrester separation distance

The shorter the distance between the surge arrester and the equipment to be protected, the better is the protection against overvoltages.

5.1.5 Safety factor

The following safety factors (Ks) should be used as a minimum when using protective devices, such as metal-oxide surge arresters (IEC 60071.2, 2014).

 Internal insulation: Ks = 1,15 External insulation: Ks = 1,05

5.1.6 Additional considerations

Other considerations for substation insulation co-ordination include:

- 1. Pole footing impedance
- 2. Reducing wavefront of incoming lightning surges
- 3. Lightning surges under surge arrester discharge current

5.1.7 Pole footing impedance

Reducing the footing resistance of the overhead earth wire on towers or poles adjacent to the substation will lessen the incidence, steepness and magnitude of lightning surges entering the substation. See Section 8.5.2 of Standard for Sub-transmission Overhead Line Design (STNW3355) for more information.

5.1.8 Reducing lightning surges

The magnitude and wavefront rise time of any lightning surge entering a substation from a connecting feeder can be reduced by;

- Increasing the lightning shielded zone of feeders out from the substation.
- A lower surge impedance for HV underground cable reduces the impulse voltage transmitted into the substation, even for short lengths of cable. Transitions between overhead and underground cable will include a set of surge arresters as well.

5.1.9 Insulator design for overhead lines

Outage rates for overhead lines can be reduced by increasing the number of insulator discs. This also reduces back flashovers from strikes to the overhead earth wire. However, it also allows higher-magnitude strikes to phase conductors to pass into the substation, which can adversely affect insulation co-ordination.

Owner: EGM Engineering Release: 3, 15 Jun 2023 (2013) 20: 3058912 SME: Senior Engineer Substation Standards

Uncontrolled When Printed 15 of 26

An additional disc is required at the where the overhead line landing span terminates at the substation landing structure.

6 Insulation co-ordination

6.1 General

Insulation co-ordination within substations is required to achieve acceptable service reliability by minimising the risk of insulation failure to major plant and equipment. This is achieved by a combination of the following:

- Determination of voltage stresses
- Minimum insulation levels for substation equipment
- Limitation of voltage stresses, through the use of protective devices, shield wires and improved earthing.

A new or review of an existing insulation co-ordination study is **NOT** required if;

- Surge arresters are installed at locations in accordance with Table 5-1 Surge arrester locations.
- The selection of surge arresters and selection of pollution level has been in accordance with Selection of Surge Arresters (STNW3033). The response to power frequency of external insulation of equipment becomes important when contamination is present.
 The external insulation must be designed for contamination severity.
- Equipment LIWV values are selected in accordance with Table 4-1 Substation equipment insulation ratings.
- Substation sites are protected from direct lightning strikes by adequate shielding in accordance with Substation Direct Lightning Strike Shielding Standard (STNW3032).
- Sites meet minimum overhead earth wire shielding distance of the overhead lines entering or leaving major substations and associated feeder structure footing resistances according to section 8.5.5 of Standard for Sub-transmission Overhead Line Design (STNW3355).
- Equipment clearances shall maintain electrical safety and maintenance requirements.
 The minimum air clearance requirements shall be as per the Clearances in Air Standard (RED 1909 STNW3013).

6.2 Insulation co-ordination objectives

The objective of insulation co-ordination study is to minimise the risk of equipment failure and outages due to overvoltages as far as reasonably practical. This can be achieved by:

Defining the rated insulation level of the equipment. Lightning impulse and short duration power frequency withstand voltage for the range I voltages (Um up to 245 kV) is required (IEC 60071.1).

Switching studies may be required at lower voltages in special applications (e.g. non-standard configurations) using the methods outlined in the Insulation Co-ordination Application Guidelines (IEC 60071.2) and/or simulation studies. PSCAD / EMTP software shall be used where computer modelling is required.

Substation sites should be protected from direct lightning strikes by adequate shielding in accordance with Substation Direct Lightning Strike Shielding Standard (STNW3032).

Owner: EGM Engineering Release: 3, 15 Jun 2023 | Release: 3, 15 Jun 20

Equipment clearances shall maintain electrical safety and maintenance requirements as per the Clearances in Air standard (RED 1909 STNW3013).

Release: 3, 15 Jun 2023 Through: 3058912 Uncontrolled When Printed 17 of 26 Owner: EGM Engineering SME: Senior Engineer Substation Standards

6.3 Procedure for insulation co-ordination

The procedure for insulation co-ordination consists of the selection of the highest voltage for the equipment together with a corresponding set of standard rated withstand voltages which characterise the insulation of the equipment needed for the application.

The general procedure can be summarised by the following steps for insulation co-ordination:

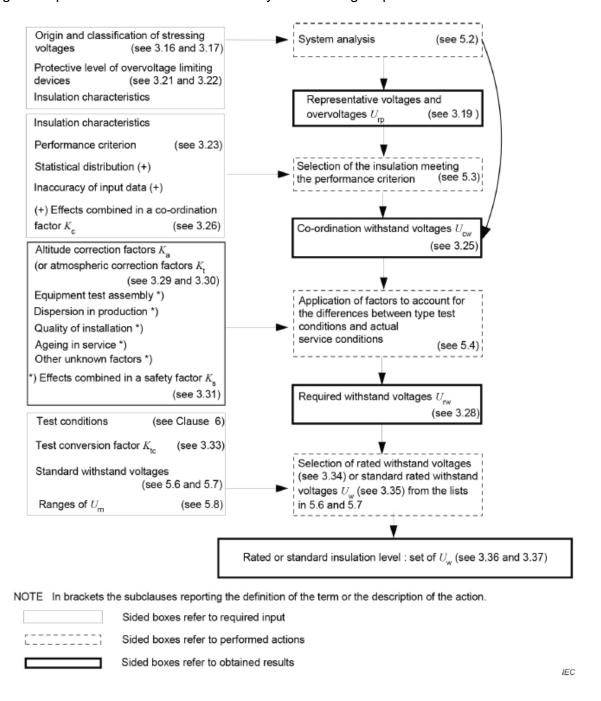


Figure 6-1 Insulation Co-ordination Procedure (IEC 60071.1, 2019)

The requirements for equipment insulation are already predetermined via a set of withstand voltages, as outlined in clause 4.1The process of insulation co-ordination is reduced to the selection and suitable placement of adequate overvoltage protective devices to limit voltage stresses on equipment insulation.

6.3.1 Design data and parameters

The following items are design inputs for a substation insulation co-ordination study and design;

- Substation single line diagram
- Substation equipment insulation withstand levels
- System voltages, system impedance, system earthing, and pollution levels
- Characteristics of protective devices such as surge arresters
- Incoming/outgoing feeder configuration, e.g. underground or overhead feeder, overhead earth wire /cable sheath configuration details

6.3.2 Design considerations

The following overvoltages should be considered;

- Continuous and temporary over-voltages
- Slow front and
- Fast front over-voltages

The study should consider all operational scenarios that may cause system overvoltage including capacitor and reactor switching.

The detailed procedure for the calculation of overvoltages in 6.3.2 is outlined in Annex G of the Insulation Co-ordination Application Guidelines (IEC 60071.2). The Computational Guide to Insulation Co-Ordination and Modelling of Electric Networks (IEC 60071-4) gives examples of the insulation co-ordination procedure if using PSCAD / EMTP.

6.3.3 Design outputs

The following items are the design outputs to be produced to identify the major substation insulation co-ordination design and installation requirements and is to include, but not limited to, the following:

- Determination of locations and details of overvoltage protective devices shown on substation design drawings; (updated SLD if modification have been made)
- Calculations to determine surge arrester ratings and evaluation of protective ratios and margins (separation distances) using (STNW3033) Selection of Surge Arresters
- Completed checklist for Insulation Co-ordination Report in 0

Owner: EGM Engineering Release: 3, 15 Jun 2023 (1996) Release:

Annex A

Informative

Types of overvoltages

A.1. Continuous power-frequency voltages

The continuous power-frequency withstand voltage of the insulation can be defined as the highest equipment voltage, Um.

A.2. Temporary overvoltage

Temporary overvoltages can be defined by an amplitude-duration characteristic. The four main types of temporary overvoltages are:

- · Fault overvoltages
- Load rejection overvoltages
- Transformer energisation overvoltages
- · Longitudinal overvoltage during synchronisation

A.3. Fault overvoltage

Earth faults produce temporary power-frequency phase-earth overvoltages on the healthy phases. The temporary overvoltage between phases or across longitudinal insulation normally does not occur.

The amplitude of the temporary overvoltages depends on system earthing. In effectively earthed systems, the TOV is about 1.3 p.u. and the duration, considering backup protection, is generally < 1 s.

In impedance earthed systems, the TOV is about 1.73 p.u. or greater the duration is generally less than 10 s with earth fault clearing or undefined in systems without fault clearing. The amplitude of fault overvoltages depends on the earth fault factor of the system. Calculation of earth fault factor is given in (STNW3033) Selection of Surge Arresters.

A.4. Load rejection overvoltages

Temporary overvoltages caused by load rejection are a function of the load rejected, system topology after rejection and the characteristics of the sources. In a system with relatively short lines for full load rejection, the temporary overvoltage is < 1.2 p.u. and the duration of the overvoltage may be up to several minutes.

In a system with long lines, the temporary overvoltage may be 1.5 p.u. or more, the duration of the overvoltage may be in the order of a few seconds.

Resonance and ferroresonance should also be considered as part of load rejection overvoltages. Temporary overvoltages arise from the interaction between capacitive elements (lines, cables, capacitors) and inductive elements having non-linear magnetising characteristics (transformers, shunt reactors). These types of overvoltages can have a magnitude of 3.0 p.u. and last until the condition is cleared.

A.5. Transformer energisation overvoltages

The temporary overvoltages resulting from transformer energisation typically have a magnitude in the range of 1.5 to 2.0 p.u. and may last for seconds.

A.6. Longitudinal overvoltage during synchronisation

Longitudinal overvoltages may occur during synchronisation of generators to the network, due to phase opposition. (Martinez-Velasco & Molina, 2015) The magnitude of the overvoltage is 2 p.u. and may last from a few seconds to several minutes.

A.7. Slow front overvoltage

Slow-front overvoltages (SFO) typically have a duration of tens to thousands of microseconds and tail durations in the same order of magnitude, with an oscillatory nature. The representative voltage shape of the SFO is the standard switching impulse, 250/2500 µs, as seen in Figure 4-1.

SFO generally arise from:

- Line energisation and re-energisation
- · Faults and fault clearing
- Switching of capacitive or inductive current
- Load rejection
- Distance lightning strikes to conductors and overhead lines

A.8. Line energisation and re-energisation overvoltages

In the earlier defined ranges for Um, in range I switching overvoltages generally do not constitute a serious problem and therefore insulation co-ordination is primarily based upon the lightning overvoltage in overhead line systems.

In range II, however, overvoltages due to closing and re-closing of single-phase or three-phase are of great importance in the selection of system insulation.

Line switching overvoltages may be reduced through the use of the following:

- Pre-insertion of resistors on the circuit breakers
- Controlled closing of the breaker
- Surge arresters

The typical phase-to-earth switching overvoltages at the end of a line have a magnitude of 2.8 to 3.0 p.u. when pre-insertion of resistors on the circuit breakers are not used. Where surge arresters are used at the end of the line the overvoltage is limited to the surge arrester SPL, typically 70% of the typical overvoltage magnitude.

Phase-to-phase switching overvoltages are typically 1.55 times the phase-to-earth switching overvoltages. The use of surge arresters will limit the overvoltage to approximately twice the SPL of the arrester.

Longitudinal switching overvoltages, in synchronised systems, have the same polarity as the operating voltage. Thus, longitudinal insulation is exposed to a lower overvoltage than the phase-to earth overvoltages. In non-synchronous systems longitudinal insulation can be subject to opposing polarities at each end, with different overvoltage levels. One terminal will be subject to energisation overvoltages while the other terminal is subject to the peak of the operating voltage, with each terminal having opposite polarities (IEEE 1313.2, R2005).

A.9. Fault and fault clearing overvoltages

Within the previously defined ranges in clause 4.1, range I and sometimes range II, high switching overvoltages can arise at the initiation of an earth fault or load rejection. Conservative estimates of maximum levels are:

- Fault initiation maximum is equal to (2k-1) p.u.
- Fault clearing maximum is equal to 2.0 p.u.

Where k is the earth fault factor of the system.

A.10. Switching of capacitive or inductive current overvoltages

Where switching is concerned, the following operations should be considered:

- Interruption of motor starting current
- Interruption of transformer or reactor magnetising current
- Switching arc furnace and their transformers
- Switching of unloaded cables and capacitor banks
- Interruption of currents by high voltage fuses

In range I defined in clause 4.1, the switching of inductive or capacitive current can give rise to overvoltages, which may require attention, however, are generally not of great concern.

In range II, overvoltages due to restrikes or re-ignitions of the arc of a switching device during interruption of capacitive current such as unload of lines, cables or capacitor banks can produce extremely high overvoltages.

The energisation of capacitor banks produces overvoltages at the capacitor location, line terminations, transformer & remote capacitor banks and at the cables.

The phase-to-earth energisation transient at the switched capacitor location should be less than 2.0 p.u. while phase-to-phase should be less than 3.0 p.u. (Martinez-Velasco & Molina)

The phase-to-phase transient at the line terminations can be 4.0 p.u. or in some cases higher due to travelling wave reflection.

The higher phase-to-phase overvoltages are mostly associated with floating capacitor banks.

The chopping of inductive current produces high overvoltages due to the transformation of magnetic energy to capacitive energy and should therefore also be considered.

A.11. Slow-front lightning overvoltage

Slow-front lightning OV originate from lightning strike to a phase conductor of long lines (>100 km) when the lightning current is sufficiently small to cause flashover and sufficient distance from the considered location. As the time to half-value rarely exceeds 200 μ and amplitude is not critical for the insulation, slow-front lightning OV, therefore, are usually neglected.

A.12. Fast front overvoltage

Fast Front Overvoltages (FFO) have time to crest/peak typically within the range of 0.1 to 20 μ s. The standard voltage shape of the FFO is shown in Figure 4-1. This is represented as the standard lightning impulse 1.2/50 μ s.

FFOs as a result of the following:

- Shielding failure
- Backflash
- Induced voltage
- Switching

A.13. Shielding failure

Shielding failure is usually as a result of lightning strikes to the phase conductors. For shielding failures, the voltage on the struck phase is random.

A.14. Backflash

Backflash is due to lightning strikes to the line shielding system, such as an overhead earth wire which flashes over to the phase conductors. The incoming surges caused by the backflash are more severe than those caused by shielding failures.

Backflash usually occurs on a phase with power frequency voltage that is opposite in polarity to the surge voltage. The maximum longitudinal overvoltage is the difference between the lightning overvoltage on one terminal and the power frequency voltage of the opposite polarity on the other terminal of the switching device.

A.15. Induced voltage

Voltages are induced in overhead lines when lightning strikes to ground are in close proximity to a line, thus inducing an overvoltage in the phase conductors. For strikes close to the substations, lightning overvoltages between phases have approximately the same magnitude as those for phase-to-earth.

A.16. Lightning type overvoltages due to switching

Lightning type overvoltages, caused by switching, are a result of the connection or disconnection of nearby equipment. This produces voltage surges with similar wave shapes of shorter duration to the standard lightning surge, as seen in Figure 4-1. Generally, these short duration and fast-rising surges are oscillatory. Therefore, the insulation strength for this wave shape is closer to that of the standard lightning impulse than that of the standard switching impulse.

Maximum values of these overvoltages are approximately:

- 2.0 p.u. for switching without restrike
- 3.0 p.u. for switching with restrike

Annex B

Informative

Insulation co-ordination checklist – example

This Standard identifies the minimum insulation co-ordination requirements for the design and construction of major substations.

Item	Description	Completed/Actioned
	Insulation Co-ordination	
1.	Major substation lightning protection designed to the acceptable shielding level (STNW3032, 2007)	Yes/No/NA
2.	Down conductors and earthing requirements met (STNW3028, 2011)	Yes/No/NA
3.	Equipment minimum insulation level requirements are met as per Table 4-1	Yes/No/NA
4.	Electrical clearance requirements are met (RED 1909 STNW3013, 2018)	Yes/No/NA
5.	Insulator pollution minimum creepage requirements are met (Pollution Class IV)	Yes/No/NA
6.	Surge arrester selection minimum requirements are met (STNW3033, 2008)	Yes/No/NA
7.	Surge arrester connection requirements are met	Yes/No/NA
8.	8. Surge arrester location requirements are met as per Table 5-1	
9.	9. Overhead earth wire requirements for incoming overhead lines are met (STNW3355, 2018)	
	If answered NO to any question 1-9:	
10.	Insulation co-ordination design inputs are documented	Yes/No/NA
11. Insulation co-ordination designed complies with IEC 60071 all applicable parts.		Yes/No/NA
12.	12. Switching studies be required at lower voltages for special applications (e.g. Yes/No/Non-standard configuration).	
13.	Insulation co-ordination design outputs are documented	Yes/No/NA

Where a detailed insulation co-ordination study is required, it is recommended that the insulation co-ordination report be structured as per the following:

- Input data and methodology
 - Discusses the input data used, the methodology adopted and the development of the PSCAD/EMTP model (if applicable) and for the studies.
- Results and discussion
 - Discuss the results from the fast front lightning studies. Could also include lightning incidence probability and stroke magnitude calculations in this section.
- Conclusions and recommendations
 - Summarise the case studies, draws conclusions and presents the main recommendations arising from the studies.

Annex C

Informative

Historical overview of standards

These standards have been revised, redesignated and withdrawn over the years to align with international standards. This Annex has been added to detail these changes.

Australian Standards

(AS 2067, 2016) Calls upon (AS 1824.1, 1995) (AS 1824.2, 1985).

SECTION 3 INSULATION

3.1 GENERAL

As conventional (air-insulated) installations are normally not impulse tested, the installation requires minimum clearances between live parts and earth and between live parts of phases in order to avoid flashover below the impulse withstand level selected for the installation.

Insulation coordination shall be in accordance with AS 1824, Parts 1 and 2.

For minimum phase-to-phase and phase-to-earth clearances required refer to Tables 3.1 and 3.2.

NOTES:

- 1 AS 1824.1 relates values for the highest voltage for equipment U_m to rated lightning impulse withstand voltages as well as rated short-duration power-frequency withstand voltages or rated switching impulse withstand voltages.
- 2 Standard nominal voltages for traction systems are also given in AS 60038. Other relevant values for traction systems can be interpolated from those in Table 3.1 of this Standard.

Note AS1824, Parts 1 and 2 have been withdrawn due to age.

Annex D

Revision history

Revision date	Version number	Author	Description of change/revision
01/01/2020	1	Tara-lee MacArthur	Revised to incorporate IEC 60071-1:2019 due to Australian Standards being withdrawn.
			Clause 5.1 IEEE and AS ranges for equipment and insulation level removed
			Table 5-3 Surge arrester locations added
			Determination of creepage distance removed as this section is covered in other standards and specifications.
			Clause 6.3 General procedure for insulation co-ordination revised to IEC 60071-2
			Update to the documentation required and checklist for procedure included in Annex B.
June 2023	2	John Lansley	Update format ECM audit. Moved legislation to Section 2.

Owner: EGM Engineering SME: Senior Engineer Substation Standards

Release: 3, 15 Jun 2023 P. 3058912 Uncontrolled When Printed 26 of 26