

Part of Energy Queensland

Substation Standard

Standard for Climate and Natural Hazard Resilience

STNW3007

These standards created and made available are for the construction of Energy Queensland infrastructure. External companies should not use these standards to construct non-Energy Queensland assets.

If this standard is a printed version, to ensure compliance, reference must be made to the relevant internet site to obtain the latest version.

Approver	Carmelo Noel				
	General Manager Asset Standards				
If RPEQ sign off required insert details below.					
Energy Queensland					
Certified Person name and P	osition Registration Number				
John Lansley	RPEQ 6371				
Manager Substation Standards	3				

Abstract: This standard is designed to outline the climatic and seismic requirements for the design of Energy Queensland substations

Keywords: Climate, Bushfire, Earthquake, Flood, Hail, Natural Hazard, Rain, Seismic, Wind

Owner: EGM Engineering Release: 4, 25 Jul 2023 | Doc ID: 3057510 SME: Manager Substation Standards Uncontrolled When Printed 1 of 20

CONTENTS

1	Over	view	4
	1.1	Purpose	4
	1.2	Scope	4
2	Refe	rences	4
	2.1	Legislation, regulations, rules, and codes	4
	2.2	Energy Queensland controlled documents	4
	2.3	Other sources	5
3	Defin	itions, abbreviations, and symbols	6
	3.1	Definitions	6
	3.2	Abbreviations and symbols	7
4	Clima	atic and seismic impacts	8
	4.1	General	8
	4.2	Projections to 2050	9
	4.3	Substation Plant Impacted by Climate Conditions	10
5	Perio	d contract specifications	11
6	Site	selection and site-specific design	12
	6.1	Considering natural hazards and disasters	12
	6.2	Minimum Recurrence Intervals	14
	6.3	Bushfire	14
	6.4	Earthquake	15
	6.5	Flood	15
	6.6	Rain	15
	6.7	Wind	16
	6.8	Hail	17
	6.9	Lightning	17
	6.10	Drought	17
	6.11	Heat	17
	6.12	Sunlight	19
	6.13	Moisture and Dust	19
An	nex A	Revision History	20

FIGURES

Figure 1 Effect of Emissions on Temperature	9
TABLES	
Table 4-1 A sample of Category 5 cyclones affecting Queensland	10
Table 4-2 Climate Effects on Equipment	10
Table 5-1 Criteria for period contract specifications and acceptability of existing designs	11
Table 6-1 Site selection and design quick reference	13
Table 6-2 Minimum Average Recurrence Intervals	14
Table 6-3 Site wind speeds guidance for R = 2500 years	16
Table 6-4 Site wind speed guidance for non-essential assets less than 5 metres high	16
Table 6-5 Temperature limits for substation equipment	18

1 Overview

1.1 Purpose

This standard outlines the climate and natural hazard resilience requirements applicable to the siting and design of Energy Queensland substations and the specification of substation plant. The objective is to site and design substations that function effectively in extreme weather conditions and during and immediately after natural hazard events of a specified severity.

1.2 Scope

For design against lightning strokes to electrical plant, see AS 1768 Lightning Protection and STNW3034 Substation Standard for Insulation Coordination.

For design of substation DC supplies, including calculation of battery and charger ratings to provide the standard autonomy times, see STNW3022 Standard for DC Supplies.

2 References

2.1 Legislation, regulations, rules, and codes

Australian Building Codes Board - National Construction Code

Geoscience Australia - Australian Rainfall and Runoff: A Guide to Flood Estimation

Bureau of Meteorology website

Bureau of Meteorology Rainfall Intensity Frequency Duration data

Queensland Government State Planning Policy 1/03 Guideline – <u>Mitigating the adverse impacts of floods</u>, bushfire and landslides

Queensland Government Disaster Management Sector - The Science of Climate Change

2.2 Energy Queensland controlled documents

Ergon Energy Substation Design Manual - 2868883

Energex Standard Network Building Blocks - Substations - 3061936

Plant Rating Manual - 4179110

STNW3022 Standard for DC Supplies - 3062917

STNW3034 Standard for Insulation Co-ordination - 3058912

STNW3035 Standard for Substation Fire & Explosion Protection - 3058013

STNW3047 Standard for Substation Ventilation & Air Conditioning - 3055324

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 4 of 20

2.3 Other sources

AS/NZS 1170.0:2002 Structural design actions – general principals

AS/NZS 1170.1:2002 Structural design actions – permanent, imposed and other actions

AS/NZS 1170.2:2021

Amd 1:2023

Structural design actions - wind actions

AS 1170.4 - 2007 Structural design actions – earthquake actions in Australia

AS 1210-2010 Pressure vessels

AS 1768:2021 Lightning Protection

AS 2067:2016 Substations and high voltage installation above 1kV ac

AS 2676.2:2020 Guide to the installation, maintenance, testing and replacement of

secondary batteries in buildings - Sealed cells

AS/NZS 3500.3:2021 Plumbing and drainage – stormwater drainage

AS 3959:2018 Construction of buildings in bushfire prone areas

AS 60068.1 – 2003 Environmental testing part 1 – general and guidance

AS/NZS 60076.1:2014 Power Transformers – General

AS/NZS 60076.2:2013 Power transformers – Temperature rise for liquid-immersed transformers

IEC 60076-14:2013 Liquid-immersed power transformers using high-temperature insulation

materials

SA TS 60815.1:2020 Selection and dimensioning of high-voltage insulators intended for use in

polluted conditions, Part 1: Definitions, information and general

principles (IEC/TS 60815-1:2008 (ED 1.0) MOD)

AS 62271.1:2019 High Voltage Switchgear & Controlgear – Common Specification

IEC/TR 62271-300:2006 High voltage switchgear and controlgear - Part 300: seismic qualification

of alternating circuit breakers

IEEE 693 – 2018 IEEE recommended practice for seismic design of substations

CIGRE TB614 - 2015 Air insulated substation design for severe climate conditions

Energy Networks Australia. Report prepared by Scientell

Pty Ltd

Electricity networks - A guide to climate change and its likely effects

National Climate Centre, Bureau of Meteorology Thunderstorm distribution and frequency in Australia, Australian Meteorological Magazine 51:3 September 2002

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 5 of 20

Definitions, abbreviations, and symbols

Definitions 3.1

For the purposes of this standard, the following definitions apply:

Annual exceedance

probability

The probability of an event being equalled or exceeded in any given year,

usually expressed as a percentage.

Average recurrence interval (ARI, R)

The average interval between exceedances of a given event severity. For R >

5 years, this is the reciprocal of the annual exceedance probability.

Bushfire Attack Level A measure of the bushfire threat to a building based on heat flux, which

depends on the Fire Danger Index, the distance to vegetation, the type of

vegetation and the slope underlying it.

Climate The average of weather conditions over years to decades.

Cyclone A system of winds rotating inwards to an area of low barometric pressure. See

also Tropical Cyclone.

Dew point temperature The temperature to which air must be cooled in order for dew to form.

Fire Danger Index (FDI) A measure of fire risk at a location, based on the probability of coinciding

strong wind, low humidity, high air temperature and dry fuel load. Uses the

McArthur Mk5 Forest FDI scale.

Flash flooding Flood of short duration with a relatively high peak discharge

Flood A flood occurs when water extends over what is usually dry land

Ground flash A lightning flash in which at least one discharge channel reaches the ground

Ground flash density The number of ground flashes per square kilometre per annum; a better

measure of lightning risk than annual thunder days, but harder data to collect.

Keraunic Level or

Annual Thunder Days

The average number of thunder days per year at a given location. A simple

but biased method for estimating lightning risk.

Natural hazard management area An area that has been defined, in Annex 3 of the SPP, for the management of a natural hazard (flood, bushfire or landslide)

Probable maximum

flood (PMF)

The most severe flood that is likely to occur at a particular location. Such a flood would result from the most severe combination of critical meteorological

and hydrological conditions

Probable maximum precipitation (PMP)

The theoretically greatest depth of precipitation for a given duration that is physically possible over a given size storm area at a particular geographical

location at a certain time of year

Recommended flood level (RFL)

The level of flood immunity recommended in the SPPG for the given type of

community infrastructure. Examples:

0.2% AEP Major switchyard Substation 0.5% AEP

Relative humidity The ratio of actual moisture content to saturation moisture content. Relative

humidity of the air is a traditional weather statistic.

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 6 of 20

Representative A set of greenhouse gas concentration trajectories to the year 2100 adopted

Concentration Pathways by the IPCC for climate modelling

Severe Thunderstorm A thunderstorm causing one or more of

A tornado

• Wind gusts ≥ 90 km/h at 10 m above ground

• Hail ≥ 20 mm diameter

Hourly rainfall intensity > 10-year ARI

Storm surge A storm surge is a rise above the normal water level along a shore that is the

result of strong onshore winds and /or reduced atmospheric pressure.

Synoptic scale Of weather systems, more than 1000 km across

Thunder day A day at a given location on which thunder is heard at least once.

Tropical cyclone A synoptic-scale cyclone formed over warm waters with sustained wind speed

near the centre exceeding 63 km/h for more than six hours.

Wind Region See AS/NZS 1170.2:2021 (not an earlier edition) Figure 3.1(A)

Briefly for Queensland, reading "smoothed coastline" for "coast":

B1: up to 200 km in from the coast south of latitude 25°S (near Bundaberg)

B2: between 50 and 100 km in from the coast north of 25°S;

also, any land north of 11°S (Bamaga and the Torres Strait islands)

C: up to 50 km in from the coast between latitudes 11°S and 25°S, and

A0: everywhere else.

Wind speed Wind speeds increase with height above ground. Statistics and forecasts are

the speed 10 m above the surface. Sustained wind speed is averaged over 10 minutes; gusts can be 40% or more faster. Gust speed statistics are the basis for design. Design wind speeds for a structure can be determined for several directions and depend on site location, topology, shielding by vegetation and other buildings, structure height and shape, and the desired probability of

exceedance. (See AS/NZS 1170.2)

3.2 Abbreviations and symbols

This list does not include well-known unambiguous abbreviations, or abbreviations defined at their first occurrence within the text.

AEP Annual Exceedance Probability

ARI Average Recurrence Interval

BAL Bushfire Attack Level (refer AS 3959)

BOM Bureau of Meteorology

ECM Enterprise Content Management

FDI Fire Danger Index (refer AS 3959)

GHG Greenhouse gasses (CO₂, CH₄, N₂O, SF₆, etc.)

IED Intelligent Electronic Device

IFD Intensity-Frequency-Duration (BOM rainfall statistics)

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 7 of 20

IPCC Intergovernmental Panel on Climate Change

 k_p Probability factor, related to seismic AEP (refer AS 1170.4)

L Design working life (refer AS 1170.0)

LODMAT Lowest One Day Mean Ambient Temperature (refer AS 1210)

NCC National Construction Code of Australia

SPP Queensland Government State Planning Policy 1/03

Mitigating the Adverse Impacts of Flood, Bushfire and Landslide

SPPG Queensland Government State Planning Policy 1/03 Guideline

R Average recurrence interval

RCP Representative Concentration Pathway

RFL Recommended Flood Level

RTD Resistance temperature detector

UV Ultraviolet

 V_{2500} Regional gust wind speed (m/s) for R = 2500 years Z Earthquake hazard design factor (refer AS 1170.4)

4 Climatic and seismic impacts

4.1 General

EQL's territory is the state of Queensland. Locations in the state may be subject to:

- Very high insolation, severe heat, drought, and dust
- Bushfires
- Prolonged high humidity, dew, mist, saline fog
- Intense rainfall, storm surges and major flooding
- Tropical cyclones, thunderstorms, hailstorms, and tornados
- Earthquake
- Landslides

Rising concentrations of greenhouse gases in the atmosphere are causing an increase in average temperature and influencing the severity of weather events. Substation plant and structures shall be designed to withstand the climate extremes projected for the lifetimes of the assets in the location in which they will be installed.

Plant purchased under period contracts should be rated for service in at least 95% of Queensland substations. Where it is too expensive to specify suitability for all substations, specifications shall request quotes for optional enhancements to deal with the more extreme conditions, such as corrosive or polluted atmospheres, or arduous load profiles.

Structures designed for a particular site, and plant purchased to serve only at one site, may be designed to the local conditions, provided the ramifications on spares holdings, training and procedures are properly taken into account.

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 8 of 20

4.2 Projections to 2050

The Climate Change Act 2022 (Cth) codified Australia's greenhouse gas emissions reductions targets under the Paris Agreement. The targets are 43% below 2005 emissions by 2030, no more than 4381 Mt CO₂ equivalent emitted from 2021 to 2030, and net zero emissions by 2050. Achieving these targets will involve extensive electrification of transport and domestic, commercial and industrial energy consumption. With higher dependence on electricity, the reliability of electricity supply infrastructure will be even more important.

Global surface temperatures are expected to plateau a few years after global net zero emissions are achieved. Sea levels will continue to rise for centuries.

In 2018, the annual median temperature in Queensland was forecast to increase by +1.4°C by 2050 under a Lower Emissions (RCP4.5) scenario and +1.9°C under the Higher Emissions (RCP8.5) scenario, with the greatest impact in the Southwest. See Figure 1. Heatwaves are likely to be more frequent and more intense.

Figure 1 Effect of Emissions on Temperature

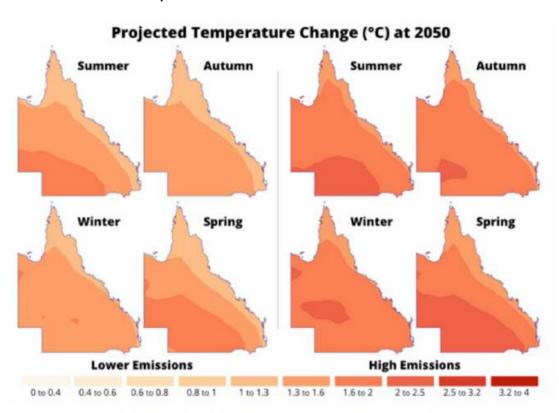


Figure 8: Temperature projection for Queensland for 2050 under lower emission (RCP 4.5) and higher emission (RCP8.5) scenarios.

Source: The Climate Change in Queensland map application tool (http://aasp.maps.arcqis.com/apps/Maplournal/index.html?appid=1f3co5235c6a44dcb1a6faebad4683fc)

Fire seasons are expected to be longer, with more severe fire danger days. Gradual changes are expected in vegetation health, vigour, and species, but the SPPG suggests it is not practicable to consider the impacts of climate change in bushfire hazard assessment studies at present.

STNW3007

Predictions of sea level rises vary significantly, but we know the rate is accelerating. The Queensland Coastal Plan has adopted 80 cm above the year 2000 levels by 2100, of which 26 cm is by 2050. Storm surges could be worse than now due to deeper barometric lows and stronger storm winds.

Extreme rain events are projected to become more intense. Development around substations may change drainage and flood levels.

Tropical cyclones and east coast lows may occur less often than now, but the proportion of intense storms is projected to increase.

Table 4-1 A sample of Category 5 cyclones affecting Queensland

Cyclone	Date	Wind speed (km/hr)	Gust speed (km/hr)	Pressure (hPa)	Landfall	Major impact
Monica	Apr, 2006	250	350	916	Arnhem Land	NT
Yasi	Feb, 2011	205	280	929	Mission Beach	NQ
Winston	Feb, 2016	280	306	884	Viti Levu	Fiji

Thunderstorms are also likely to be more severe; Australian hailstone size records were broken in 2020 (14 cm, Logan) and again in 2021 (16 cm, Yalboroo, NQ).

4.3 Substation Plant Impacted by Climate Conditions

The following substation equipment was identified in CIGRE TB614 as being impacted by climate conditions.

Table 4-2 Climate Effects on Equipment

Equipment	Heat and drought	Rain flooding and humidity	Snow and ice	Wind
Transformers	✓	✓	✓	✓
Circuit breakers	✓	✓	✓	✓
Switches/isolators/disconnectors	✓	✓	✓	✓
Insulators or insulation		✓	✓	✓
Foundations		✓	✓	✓
Control houses and associated protection equipment	√	√	√	√
Cable trays		✓	✓	✓
Fence and roads		✓	✓	✓
Drains and pumps		✓		

Equipment	Heat and drought	Rain flooding and humidity	Snow and ice	Wind
Ground grid and earthing		√		
Energized bus contact and clearance			✓	
Lightning shield wires			✓	
Lightning masts			✓	
Bushings	✓			
Capacitors	✓			
Energized Bus	✓			
Connectors and conductors	✓			
Bus Supports				✓

5 Period contract specifications

The design criteria here have been chosen so that the probability of an exceedance coinciding with other compounding factors is acceptably low. Some of the requirements are quite stringent. Where a tendered design fails to meet a criterion in the first pass, or the cost of compliance is too high, manage the risk. Examples:

- Items with less wind resilience may be included as standard items if their deployment is restricted to non-cyclonic wind regions or sheltered sites. See Table 6-3 for guidance.
- Modular buildings could have design variations with different Bushfire Attack Levels suited for different distances to classified vegetation. Refer AS 3959.

Higher levels of resilience can be specified for the types of plant where these are naturally easy to achieve.

Table 5-1 Criteria for period contract specifications and acceptability of existing designs

Factor	Plant specification criteria		Reference
Altitude	meters above sea level	1,000	Standards
Ambient air temperature	Lowest	-5°C +50°C	AS 2067 2.4.3.4 "very hot climates"
tomporataro	Highest Massive steel vessels e.g., transformer	Tiot diffication	
	tanks:		AS 1210
	Lowest One Day Mean	0°C	
Substations indoor	Lowest	-5°C	AS 2067 CI. "-5 indoor"
air temperature	24-hour average	+40°C	AS 2067 normal + 5°C
	Highest	+45°C	AS 2067 normal + 5°C

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 11 of 20

Factor	Plant specification criteria		Reference
Temperature of	Power Transformers:		AS 60076.2,
cooling medium	correction to Normal cooling conditions	-5 K	IEC 60076-14
Solar radiation	Maximum W/m²	1,100	AS 2067 normal
Relative humidity,	Minimum	25%	
outdoor	Maximum	100%	
Relative humidity,	Minimum	25%	AS 2067 tropical 24 hr +
indoor	Maximum	99%	1%
Ground temperature	Winter	+30°C	Plant Rating Manual
at 1000 mm depth	Summer	+35°C	Table 19
Thunder days	Annual	40	ВОМ
Ground flash density	Annual strokes/km ²	4	AS 1768 Fig 2.3
Hail	Hailstone diameter (mm)	70	
	Accumulation depth (mm)	100	
Bushfire	All building construction elements	BAL-FZ	AS 3959
Wind speed (gusts)	Height h ≤ 5 m 227 km/h	63 m/s	AS/NZS 1170.2
	Height h = 10 m 248 km/h	69 m/s	
Rainfall intensity	Five-minute duration mm/h	350	BOM IFD Wet tropics
Ingress Protection	Outdoor cubicles:	IP55	EQL
	Outdoor protection / indication instruments:	IP65	
Atmospheric	Exterior coatings category for plant not	C4 (High)	AS 2312 or
corrosivity	easily accessed for maintenance:		ISO 12944-2
	Options for shorefront or industrial site:	C5 (Very High)	AS 2312: C5-M or C5-I
Pollution	Site pollution severity class	d (Heavy)	SA TS 60815.1
	Option for heavily polluted sites:	e (Very Heavy)	
Seismic	Probability x Hazard Factor k _P Z	0.18	AS 1170.4
	Switchgear and control gear qualification	Yes	IEC/TR 62271-300

6 Site selection and site-specific design

6.1 Considering natural hazards and disasters

When there are several candidate sites, consider the following requirements of the SPP:

- If the site is in a natural hazard management area and use of the site will involve
 - o vegetation clearing,

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 12 of 20

- o net filling exceeding 50 cubic meters or
- o redirecting surface or ground water in a landslide area, additional justification and documentation will be required.
- If the site is subject to a High or Medium bushfire hazard, the development application should include and comply with a comprehensive Bushfire Management Plan
- If the site is in a landslide hazard area, the development application should include geotechnical analysis describing measures to ensure the long-term stability of the site, security of access and protection from landslides originating above the site.

Table 6-1 Site selection and design quick reference

Factor	Criteria	Notes
Bushfire	Assess the BALs required for each candidate site.	AS 3959
	Design buildings to their maximum assessed BAL.	
Earthquake	Give preference to sites with stronger sub-soil class, particularly in higher hazard factor areas.	AS 1170.4
	Design to Earthquake Design Category II for structure heights < 25 m, else Category III. Demonstrate immediate serviceability following the design event for Importance Level 2 structures.	
	Design non-structural parts and components in accordance with Section 8 of AS 1170.4	
Flood	Floor and plant serviceability level: RFL + 300mm	SPPG + EQL margin
Hail	The keraunic level map indicates the frequency of hailstorms	Thunder days
Landslide	In a landslide hazard area, commission a geotechnical analysis	
Rain	Essential plant to remain functional at five-minute intensity = BOM "1 in 2000" AEP rainfall depth x 12 (mm/hr)	BOM IFD stats
	Eave gutters 1 in 20 AEP and valleys and box gutters 1 in 100 AEP, per the plumbing and drainage standard	AS/NZS 3500.3
Wind	Avoid very exposed open terrain, e.g., oceanfront sites.	AS/NZS 1170.2
	Avoid sites on or above slopes steeper than 1:20, unless there are mitigating factors such as distance from the coast.	
	Evaluate site wind speed multipliers and determine design wind speeds from the regional gust wind speed at the required ARI.	
	Verify busbars, strung bus, and overhead earth wires strength limit state design pressures	

Where local supply transformers are supplied from outgoing feeders, select the least exposed feeders, and consider underfrequency load shedding. Install connections to external AC boards for portable generators to provide emergency local supply.

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 13 of 20

6.2 Minimum Recurrence Intervals

Buildings or structures that are essential for post-disaster recovery are designated Importance Level 4 in the NCC and AS/NZS 1170. This determines the severity (ARI) of disasters that the buildings shall be capable of withstanding. Specify essential outdoor substation assets to achieve at least the same level of resilience as buildings unless the asset can be readily replaced from spares on hand. Assets that are not essential to a functioning substation may be designed to lesser severity events.

Table 6-2 Minimum Average Recurrence Intervals

Asset	ARI	Reference			
	(years)				
Bushfire					
All	2000	NCC Part G5 Construction in bushfire prone areas, Table GV5.1			
Earthquake					
Buildings	1500	NCC Part B1 Structural provisions (Deemed to Satisfy) Table B1.2b			
Wire Fence	200	EQL			
Paling Fence	500	EQL			
Plant	40 x <i>L</i>	AS/NZS 1170.0 Table F2, Note 2, where <i>L</i> is design working life			
Flood					
Substations	200	SPPG Appendix 9. Add 300 mm margin. (EQL)			
Major switchyard	500				
Rainfall					
All	2000	EQL, aiming for similar resilience in intense rainfall as for other hazards			
Wind					
Buildings	2000	NCC Part B1 Structural provisions (Deemed to Satisfy) Table B1.2b			
Wire Fence	200	EQL			
Paling Fence	500	EQL			
Plant	40 x <i>L</i>	AS/NZS 1170.0 Table F2, Note 2, where L is design working life			

The ARIs in Table 6-2 are absolute minimum values. For Australian Importance Level 4 structures for which design events are not given elsewhere, AS/NZS 1170.0 sets R = 2500 years for 50-year design life, for both wind and earthquake events.

6.3 Bushfire

Assess sites and locate and design structures within site envelopes in accordance with AS 3959.

The default FDI for Queensland is 40. The best sites from a bushfire perspective are where structures will be at least 100 m from classified vegetation (50 m for unmanaged grassland). Next best are sites where the vegetated ground is flat or slopes up with distance from the site. Vegetated areas that may be excluded from assessment include those that are small and isolated, mangroves, maintained parklands, orchards, some crops, and windbreaks. See AS 3959 2.2.3.2.

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 14 of 20

6.4 Earthquake

Using R = 2500 rather than R = 1500 increases the seismic probability factor k_p from 1.5 to 1.8. Designing to $k_pZ = 0.18$ withstands $R \ge 1500$ events for sites within 150 km of Bundaberg (where $0.10 \le Z \le 0.12$) and $R \ge 2500$ everywhere else in Queensland (where $Z \le 0.10$).

6.5 Flood

When selecting a site, consider accessibility during floods and how to achieve the EQL standard flood resilience level in Table 6-2. The floors of new substation buildings shall be no lower. Design transformer pads, switchgear structures and high voltage plant enclosures so that only impermeable or expendable equipment will be below this level. Check plant specifications, or the general arrangement drawings of standard items, for the minimum height above foundations for cable boxes, marshalling and control boxes, outdoor switchboards and protection panels, auxiliary switches, mechanisms, and breathers.

At flood prone sites,

- Perform risk assessments and document procedures for temporary protection or removal of equipment, emergency interruptions, safe access and repair or dry out after flooding.
 Underslung transformer cooling fans may be sacrificed in a severe flood if they can't be rescued beforehand.
- Where fast overland flow is possible, consider erosion, debris, dynamic effects, and the impact of obstruction on surrounding properties.
- Seal up conduit entries and plug spare conduits.
- Install backflow preventers in drains where necessary.
- Elevate or flood-proof key components. Consider means to temporarily elevate breathers.

6.6 Rain

Intensity-frequency-duration statistics for rainfall are available at

Rainfall IFD Data System: Water Information: Bureau of Meteorology (bom.gov.au)

Select the Single Point radio button, enter the geographical coordinates and click Submit. Tick the "1 - 45 minutes" duration.

For extreme events, select the Rare radio button. The extreme 5-minute intensity in mm/hr is 12 times the "1 in 2000" AEP Rare Design Rainfall Depth for 5 min duration. For example, Babinda's coordinates are -17.3422°, 145.9236°, the "1 in 2000" depth is 40.8 mm in 5 minutes, so the extreme 5-minute intensity is 490 mm.

For roof drainage, select the IFDs radio button and the 5% and 1% AEP intensities are 12 times the 5 min figure in the corresponding AEP column. Alternatively, figures for the location, or one close by, can be looked up in Appendix D of AS/NZS 3500.3.

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 15 of 20

6.7 Wind

The site gust wind speed is calculated by multiplying the regional gust wind speed for the selected ARI by five multipliers. (Refer AS/NZS 1170.2)

M_d the direction multiplier, 0.75 to 1, depending on wind region and direction

M_d is 0.9 in regions B2 and C, regardless of wind direction

M_c the climate change multiplier, currently 1.05 in cyclonic regions, elsewhere 1

M_{z/cat} the terrain/height multiplier. Away from very exposed open terrain, safe values are

 $M_{z/cat} = 0.91$ for structures up to 5 m high

 $M_{z/cat}$ = 0.91 + 0.018 x (h-5) for structures 5 ≤ h ≤ 10 m high

 M_s the shielding multiplier. 1 is safe (in case the shielding building is removed)

M_t the topographic multiplier. This is 1 for sites on or above slopes less than 1:20

Using R = 2500 rather than R = 2000 increases design wind speeds by no more than 1.5%. Assuming the site satisfies the restrictions on terrain and topography above, Table 6-3 shows conservative values of site wind speed for R = 2500 years, and structure heights up to 5 metres and also for a structure height of 10 metres.

Table 6-3 Site wind speeds guidance for R = 2500 years

Parameter	Units	Wind Regions in Queensland								
Farameter	Ullits	А	٥.	В	B1		B2		С	
V ₂₅₀₀	(m/s)	4	.8	6	4	64		74		
M _d (max)		1.00		0.	95	0	.9	0.9		
M _c		1.	00	1.	00	1.	05	1.	05	
Ms		1.	00	1.	00	1.	00	1.	00	
M _t		1.	00	1.	00	1.	00	1.	00	
h	(m)	≤ 5	10	≤ 5	10	≤ 5	10	≤ 5	10	
M _{z/cat}		0.91	1.00	0.91	1.00	0.91	1.00	0.91	1.00	
Site wind speed	(m/s)	44	48	55	61	55	60	64	70	
Site wind speed	(km/h)	158	174	199	219	198	217	230	253	
Cyclone Category		(3	;	3	3		4		

Note: Region C site wind speed declines linearly with distance from the smoothed coastline to the corresponding Region B speed at the B/C region boundary. At *R* = 2500 years and the multipliers shown, for structures up to 5 metres high the rate of change is 0.63 km/hr per kilometre.

Table 6-4 shows conservative values of site wind speed for R = 500 years and R = 200 years and structures up to 5 metres, based on the same multipliers as in Table 6-3.

Table 6-4 Site wind speed guidance for non-essential assets less than 5 metres high

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 16 of 20

Asset	Parameter	Units	Wind Regions in Queensland			
ASSEL	Parameter	Units	A0	B1 and B2	С	
	V ₅₀₀ (m/s)		45	57	66	
Paling	Site wind anod	(m/s)	41	49	57	
fences	Site wind speed	(km/h)	148	176	205	
	Cyclone Category	•	2	3	3	
	V ₂₀₀ (m/s)		43	52	61	
Wire fences	Site wind anod	(m/s)	39	45	52	
Wile leffces	Site wind speed	(km/h)	140	162	187	
	Cyclone Category		2	2	3	

Note: Multipliers are as in Table 6-3. In Region C the site wind speeds for fence design decline by approximately 0.5 km/hr per kilometre from the coast.

Design doors and shutters to resist the site wind pressure. Those that are large enough to compromise the building if accidentally left open shall be included in the intrusion alarm system. In Region C, design for impact by windborne debris.

Provide means to secure objects likely to become airborne if stored in the substation yard.

6.8 Hail

Design roof structures for hail loading if the roof pitch is less than 5 degrees. Avoid roof pitches less than 3 degrees, box gutters and roof obstructions that encourage the accumulation of hail drift.

Steeper roof pitch reduces the impact energy of hailstones. Corrugated roofing sheets are less likely to be punctured by giant hail than flat-pan profiles.

6.9 Lightning

Refer to AS1768 and STNW3034 Substation Standard for Insulation Coordination.

6.10 Drought

Design earth grids for seasonal variations in soil resistivity, providing deeper drilled rods in bentonite if necessary.

Provide for oil separator water levels to be maintained efficiently and reliably.

Design substation structure foundations to cater for ground movement due to variation in moisture content.

6.11 Heat

Outdoor equipment must be able to survive the specified highest ambient temperature, but this temperature is not necessarily the basis for load ratings. Ratings are chosen considering ambient temperature and load profiles, thermal time constants, the acceleration of ageing with temperature, etc. For locations that are consistently very hot, options include

selecting a higher MVA or current rating than the forecast load indicates, or

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 17 of 20

- specifying lower temperature rise at rated load, or
- specifying an option with a higher tolerance to temperature, e.g., ester fluid transformers, thermally upgraded paper insulation, higher thermal mass, or
- accepting a shorter service life at that location.

Power transformers rated 5 MVA and greater shall be purchased with RTDs monitoring ambient and top oil temperature, and an IED calculating winding hotspot temperatures and performing preemptive cooler control. Transformers rated 20 MVA and greater shall, in addition, be purchased with fibreoptic thermometers monitoring winding temperatures. Transformers smaller than 20 MVA may be purchased with fibreoptic thermometers when economic. Retrofit RTD ambient and oil temperature monitoring and pre-emptive cooler control to all transformers subjected to arduous load profiles or significant risk of overload.

Expansion chambers/safety valves for oil filled equipment shall cater for the volume / internal pressure at maximum oil temperature.

Sealing of gas-insulated equipment shall cater for the pressure at maximum gas temperature.

Design the ventilation and air conditioning of control and protection buildings according to STNW3047.

Ensure batteries and any electronic equipment located outdoors are in suitably temperature-controlled cubicles (see Table 6-5).

The following temperature limits are typical for substation equipment that may be housed in outdoor marshalling or control cubicles:

Table 6-5 Temperature limits for substation equipment

Equipment	Maximum Temperature (°C)		
Substation batteries	10-year design life at 25°C		
	(Battery life halves every 8 degrees above design life)		
Battery chargers	100% power at 50°C		
	55% power at 70°C		
Protection relays and meters	55°C		
Transformer management IEDs	80°C		
Liquid Crystal Displays (LCDs)	85°C withstand, 70°C self switch off		
Terminals	100°C		
Cables	75°C (V-75)		
	90°C (V-90, XLPE, HFI)		
Capacitor cans	55°C		
	45°C average over 24 hrs		
AC switchboard and circuit breakers	45°C (without de-rating)		

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 18 of 20

Cubicles utilising natural ventilation are preferred. Vents should be in the vertical sides near the top and bottom of the box and screened to exclude ants and mason flies. The vents shall permit easy cleaning and replacement.

Where unshielded single-skinned boxes will get too hot, consider alternatives:

- double skinned boxes or boxes with heat shields and/or sunshades
- reflective paint
- · thermostat-controlled fans
- air conditioning.

6.12 Sunlight

Cable insulation and sheaths exposed to sunlight shall be UV stable to the equivalent of 2% carbon black content.

Consider sunshades, pergolas, or reflective paint to extend the life of equipment.

Orient or shade sensitive surfaces, such as electronic displays and cubicle viewing windows, to minimise exposure to the sun.

6.13 Moisture and Dust

Outdoor control and marshalling cubicles shall have IP55 ingress protection with the door closed.

Control cables are to enter cubicles from the bottom to minimise moisture ingress.

Specify controlled or self-regulating heaters to prevent condensation in cubicles other than those housing only terminal blocks or strips.

Cubicles and cable trays are to be made of corrosion-resistant metals.

Instruments and gauges exposed to the weather, including their terminal boxes, shall have IP65 or better ingress protection.

Perform site-specific insulator selection and dimensioning (see SA TS 60815.1) where insulators in the vicinity have a history of flashover or the site is directly subjected to high-conductivity contaminants, sea spray, or a combination of dust and condensation.

STNW3007

Release: 4, 25 Jul 2023 | Doc ID: 3057510 Uncontrolled When Printed 19 of 20

Annex A Revision History

Revision date	Version number	Author	Description of change/revision
29/05/2011	0.1A	DC	First draft
03/05/2012	0.2	DC	Endorsed by SDOF
07/05/2013	0.3	PM	Minor formatting changes
27/06/2014	0.4	Cassie Caldwell	Transferred to new document template
1/1/2020	0.5	John Lansley	Combined EQL document, added more climate impacts.
27/3/2020	1.0	John Lansley	Final revision after comments
28/12/2020	2.0	John Lansley	Amendment to Wind Code Design for substation fencing.
16/06/2022	3	John Lansley	Transferred to new document template
06/06/2023	4.0	Peter Rollings	Renamed from "Climatic and Seismic Conditions" Comprehensive revision